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Abstract 

Omega-3 fatty acids (FAs) and their glycerides are important bioactive compounds that are found in fish 

oils and some vegetable oils. They are involved in human health, especially on brain and cardio-vascular 

diseases. The main disadvantages of these compounds are related to the low oxidative and thermal stability 

as well as very low water solubility. Natural cyclodextrins (α-, β- and γ-CD) can be appropriate matrices 

for enhancing their stability and apparent water solubility. 

In the present study the molecular modeling and conformational analysis on free omega-3 FAs (e.g. α-

linolenic, all-(Z) eicosa-5,8,11,14,17-pentaenoic, and all-(Z) docosa-4,7,10,13,16,19-hexaenoic acids) and 

their mono-, di- and triglycerides have been performed using molecular mechanics (MM+) method in 

vacuum. The minimum energy conformations were used for docking in α-, β- and γ-CD at 1:1, 1:2 and 1:3 

molecular ratios. The best FAs (or their glyceride) / CDs interactions were obtained for the hydrophobic 

moiety of the FA (or glyceride) with the inner cavity of the CD. Furthermore, β- and γ-CD are more 

appropriate to molecular encapsulate omega-3 FAs and their glycerides, taking into account the steric 

hindrance and lower flexibility of these omega-3-containing biologically active compounds. 

Keywords: omega-3 fatty acids, fish oils, glycerides, molecular modeling, cyclodextrins, host-guest 

supramolecular systems, docking experiments 

______________________________________________________________________________________ 

 

1. Introduction 

Humans can synthesize almost all essential fatty 

acids (FAs), but a small group of polyunsaturated 

FAs (PUFAs) cannot be produced in the human 

body. They belong to ω-3 (n-3) and ω-6 (n-6) 

classes. Consequently, they must be introduced in 

the body by diet and they are involved in the human 

health [1]. The main such compounds are EPA (all-

(Z) eicosa-5,8,11,14,17-pentaenoic acid, C20:5) and 

DHA (all-(Z) docosa-4,7,10,13,16,19-hexaenoic 

acid, C22:6) [2,3]. The first FA, EPA, is present in 

the gray matter from the brain, while DHA is 

present in the nerve tissue [4,5].  

Consequently, they are related to the functionality 

of the central nervous and cardiovascular systems 

because ω-3 FAs are favorable involved in the lipid 

profile, diabetes, epilepsy and Alzheimer diseases 

[6,7]. 

One of the main disadvantage of FAs and their 

glycerides is the low oxidative and thermal stability 

[8-10]. PUFAs are the most unstable products. They 

can be protected by micro- and nanoencapsulation. 

Cyclodextrins (CDs) are appropriate matrices for 

molecular encapsulation of FAs and their glycerides 

[11-14], because CDs have structures such as 
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truncated cones with hydrophobic inner cavities that 

can well interact with FA moieties. 

This can protect the FA moiety against oxidation 

and the apparent water solubility of these 

hydrophobic compounds can be enhanced. CDs are 

cyclic oligosaccharides having 6, 7, or 8 

glucopyranose moieties, corresponding to the 

natural α-, β- and γ-CD, which are food-grade 

materials [15]. Other semi-synthetically CDs are 

frequently used for their enhanced water solubility, 

but some of them are only pharmaceutically-grade 

products [16]. 

Many theoretical studies on cyclodextrins [17,18] 

and their molecular inclusion compounds with 

natural essential oil compounds [19-23], FAs [24], 

alkaloids [25], antioxidants (e.g. flavonoids) [26,27] 

as well as with synthetic drugs [28-30] exists. 

The goal of the study was the evaluation the 

molecular encapsulation capacity of natural CDs for 

ω-3 FAs and their mono-, di- and triglycerides using 

theoretical molecular mechanics and docking 

methods. 

2. Methods 

2.1. Compound selection 

Three ω-3 free FAs named α-linolenic acid (LNL), 

all-(Z) eicosa-5,8,11,14,17-pentaenoic acid (EPA), 

and all-(Z) docosa-4,7,10,13,16,19-hexaenoic acid 

(DHA) (Figure 1), as well as 1- and 2-

monoglycerides (LNL-MG1/2, EPA-MG1/2, and 

DHA-MG1/2) (Figure 2), 1,2- and 1,3-diglycerides 

(LNL-DG12/13, EPA-DG12/13, and DHA-

DG12/13) (Figure 3) and triglycerides (LNL-TG, 

EPA-TG, and DHA-TG) (Figure 4) containing the 

same moiety have been used in this study. 
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Figure 1. Stuctures of free ω-3 fatty acids used in the study 
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Figure 2. General structures of ω-3 monoglycerides used in this 

study 
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Figure 3. General structures of ω-3 diglycerides used in this 

study 
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Figure 4. General structures of ω-3 triglycerides used in this 

study 

2.2. Molecular modeling and conformational 

analysis 

Molecular modeling of the free FAs and their 

mono-, di-, and triglycerides, as well as of α-, β- and 

γ-CD was performed using MM+ molecular 

mechanics program from the HyperChem 5.1. A 

RMS of 0.01 kcal/mol and a Polak-Ribiere 

conjugated gradient algorithm have been used. The 

Conformational Search program from the same 

package had used for selecting the minimum energy 

conformation for further analyses. The following 

parameters for Conformational Search have been 

selected: all flexible bonds from ω-3 FA, glyceride 

and CD structures and all non-rigid rings from CDs 

(i.e. glucopyranose moieties), flexible torsion angles 

variation of ±60° to ±180°, ring torsion flexing 

variation of ±30° to ±120°, energy criterion for 

acceptance the conformation of 4 kcal/mol above 

minimum, duplicate conformations for distances 

between corresponding atoms lower than 0.5 Å, 

differences between corresponding angles lower 

than 15°, and energy differences lower than 0.05 

kcal/mol, MM+ optimization program with Polak-

Ribiere algorithm and a RMS of 0.01 kcal/mol; up 
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to 500 iterations and 500 optimizations, as well as 

maximum 50 conformations were set. 

2.3. Docking of FAs and their glycerides in CDs 

Minimum energy conformations for both guest and 

host compounds (i.e. FAs and glycerides / CDs for 

guest-host supramolecular systems) have been used 

for docking experiments. Three molecular ratios of 

1:1, 1:2 and 1:3 for guest:host complex had 

selected: a ratio of 1:1 for FA:CD, MG:CD, DG:CD 

and TG:CD systems, a ratio of 1:2 for DG:CD and 

TG:CD systems and a ratio of 1:3 for TG:CD 

systems. The starting position of the guest molecule 

was at ~8 Å of the gravity center to the center of CD 

for all ratios. Furthermore, the guest molecule was 

oriented with the hydrophobic moiety to the primary 

and secondary sides of CDs, along the OZ axis of 

CD (axis of symmetry). Only orientations to the 

secondary side (the larger side) of the CD provided 

appropriate complexations. The optimization of the 

1:1, 1:2 and 1:3 complexes were performed using 

the same MM+ program with the RMS gradient of 

0.01 kcal/mol and Polak-Ribiere algorithm. The FA 

(or glyceride) / CD interaction energy (Eint.) was 

determined as a difference between the sum of the 

internal energies of guest (EFA/MG/DG/TG) and host 

(ECD) molecules and the energy of the complex 

(Ecompl.): 

Eint. = (EFA/MG/DG/TG + ECD) – Ecompl.  [kcal/mol] 

 

2.4. Structural parameters 

In order to evaluate the importance of some 

structural characteristics of guest molecules to the 

encapsulation capacity, the main structural 

descriptors using QSAR Properties program from 

the HyperChem package had used. All structural 

descriptors were determined for the minimum 

energy conformations. The following descriptors 

were considered: van der Waals molecular surface 

and vdW molecular volume (SvdW, Å2, and VvdW, Å3), 

hydration energy (kcal/mol), logarithm of the 

octanol/water partition coefficient, logP, refractivity 

(Å3) and polarizability (Å3). The interaction energy 

of the complex was correlated with the structural 

descriptors of the guest molecules in order to 

evaluate the influence of some structural 

characteristics on the formation of host-guest 

supramolecular systems in vacuum. 

 

 

3. Results and discussion 

The following steps were involved for theoretical 

evaluation of the molecular encapsulation of the 

most important ω-3 FAs, mono-, di- and 

triglycerides (having the same FA moieties) in CDs: 

building of the starting molecular structures (for 

CDs using the XRD data), taking into account the 

chirality of asymmetric C-atoms, selecting of all 

flexible bonds and rings, conformational analysis of 

all guest and host structures, selecting of the most 

stable conformations (minimum energy 

conformations) for both guest (FA or mono-, di-, 

triglyceride) and host (CDs) molecules, selecting 

the start positions for the guest-host system, taking 

into account the molar ratio, docking of the 

supramolecular system and evaluating the guest-

host interaction energy. Furthermore, the possibility 

to correlate the interaction energy with the structural 

descriptors of the guest molecules have been 

performed. Specific results for the guest/host 

supramolecular systems were presented and 

discussed for the free FAs, MGs, DGs and TGs.  

 

3.1. ω-3 Free fatty acid / cyclodextrin 

supramolecular systems 

The free ω-3 FAs had many flexible bonds that 

allows a lot of conformations with internal energy 

close to the most stable one. Thus, 13 flexible bonds 

have been selected for conformational evaluation of 

LNL, EPA and 14 flexible bonds for DHA. 

Conformational analysis of all free FAs provides 

minimum energy conformations having spiral-like 

hydrophobic moiety in vacuum. Furthermore, more 

than eighteen conformations had energies close to 

the most stable conformer (up to 4 kcal/mol above 

best) (i.e. 18 for LNL and 20 for both EPA and 

DHA). Consequently, the alignments (using the 

RMS method) of the most stable conformers having 

energies up to 0.5 kcal/mol above the most stable 

conformer for each ω-3 FA indicates very well 

superposition of both carboxylic and hydrophobic 

moieties (Figure 5). 

On the other hand, CD structures have pseudo-

truncated cone-like shapes for the minimum energy 

conformations (taking into account the XRD data 

related to CD structures in crystals). α-CD and γ-CD 

are more symmetrical than β-CD due to the even 

number of glucopyranose units for the first case.  
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However, the secondary face of CDs (the side 

having secondary 2-OH and 3-OH groups of the 

glucopyranose moieties) is much larger than the 

primary face (the side containing the primary 6-OH 

groups, which easily interact each other and “block” 

the access of a guest molecule; e.g. Figure 6 for α-

CD). 

 

 

 

Figure 5. Superposition of the first five stable conformers of 

LNL (top), EPA (middle) and DHA (bottom) 

 

 

Figure 6. The minimum energy conformation for α-

cyclodextrin (two representative views along OX and OZ axes) 

Consequently, the FA molecule at the minimum 

conformation was oriented with the hydrophobic 

moiety (along the hydrocarbon axis) against the 

secondary face of the CD. The gravity centers of 

CD and FA were set along the OZ axis of the CD, to 

a distance of ~8 Å. The FA:CD molecular ratio was 

1:1 and all experiments were performed in vacuum 

(Figure 7). 

 

 

 

 

Figure 7. The minimum energy conformation for α-

cyclodextrin (two representative views along OX and OZ axes) 
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The highest FA/CD interaction was obtained for β- 

and γ-CD. The difference against the FA/α-CD’s 

interaction energy was significant. Thus, the 

interaction energy of LNL/β- and γ-CD was 27-28 

kcal/mol, in comparison with only 23.6 kcal/mol for 

the case of LNL/α-CD (Table 1). Similar results 

were obtained for the interaction energies of EPA 

and DHA / CDs supramolecular systems (with 4-5 

kcal/mol higher for β- and γ-CD complexes in 

comparison with EPA or DHA/α-CD complex) 

(Figure 8). 

 

 

 

Figure 8. Optimized ω-3 fatty acid/cyclodextrin 

supramolecular systems (top: DHA/α-CD, middle: DHA/β-CD 

and bottom: DHA/γ-CD) 

The variation of the total energy of FA/CD complex 

(related to the interaction energy) are similar in all 

cases: a significant variation of the FA/CD 

complex’s energy up to 800-1000 optimization 

cycles, followed by “refinement” of the complex 

(Figure 9 and Table 1). 
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Figure 9. ω-3 Fatty acid/cyclodextrin complex’s energy versus 

optimization cycle (example for the EPA/CD complexes) 

 

Table 1. Complex energy and interaction energy for ω-3 free 

acid / cyclodextrin complexes 

No Code Ecomplex (kcal/mol) Einteraction (kcal/mol) 

1 LNL_aCD 50.4 23.6 

2 LNL_bCD 57.5 26.9 

3 LNL_gCD 67.8 28.1 

4 EPA_aCD 56.6 16.9 

5 EPA_bCD 62.9 21.0 

6 EPA_gCD 69.9 25.5 

7 DHA_aCD 56.3 18.1 

8 DHA_bCD 67.7 17.1 

9 DHA_gCD 72.0 24.3 

3.2. ω-3 Fatty acid glyceride / cyclodextrin 

supramolecular systems 

Similar behavior was observed for ω-3 fatty acid 

mono-, di- and triglycerides. The number of torsion 

angles was significantly higher, especially for 

triglycerides: 17 for both LNL-MG and EPA-MG, 

while for DHA-MG this number was 18. On the 

other hand, the number of torsion angles for 

diglycerides was almost double: 32 for LNL-DG or 

EPA-DG and 34 for DHA-DG. Finally, LNL-TG 

and EPA-TG had 47 flexible torsion angles, while 

DHA-TG had 50 flexible angles. These high 

number of flexible/torsion angles provide many 

conformers with relatively good stability. In all 

cases, the ω-3 fatty acid moiety had a spiral-like 

conformation in vacuum, due to the hydrophobic / 

van der Waals intramolecular interaction.  
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Furthermore, more than 20 conformers having 

internal energy up to 4 kcal/mol higher than the 

most stable conformer (e.g. Figure 10). 

 

 

 

Figure 10. The most stable conformers of EPA-MG1 (top), 

EPA-DG12 (middle) and EPA-TG (bottom) 

Molecular encapsulation of mono-, di- and 

triglycerides of the ω-3 fatty acids in CDs was 

performed at 1:1 for all systems. Moreover, 

guest:host ratio of 1:2 and 1:3 was used for DG and 

TG, respectively. The interaction of the fatty acid 

moiety with the inner cavity of CD was significant 

from the same secondary side of the CD (Figure 

11). Further, the stabilization of the complex was 

relatively fast in such cases, probably due to the 

presence of the glycerol moiety that can further 

interact by H-bonding with the secondary HO-

groups of the CD (especially for MG and DG) 

(Figure 12). 

 

 

 

 

 

 

 

Figure 11. Optimized ω-3 fatty acid glycerides/cyclodextrin 

supramolecular systems (top: LNL_MG1/γ-CD, middle: 

DHA_DG12/γ-CD at 1:2 molecular ratio, and bottom: 

EPA_TG/γ-CD at 1:3 molecular ratio) 
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Figure 12. Optimization energy of mono-, di- and triglyceride 

of ω-3 fatty acid/cyclodextrin complexes versus optimization 

cycle (example for the EPA_DG12 (DG13)/CD complexes at 

1:1 and 1:2 molecular ratios) 

 

Generally, asymmetric monoglycerides of the ω-3 

fatty acids (i.e. glycerol 1-substituted derivatives, 

MG1) well interact with the CD cavity in 

comparison with the corresponding symmetric 

monoglycerides. Thus, the interaction energies for 

the asymmetric versus symmetric monoglycerides 

were 17-31 kcal/mol and 20-25 kcal/mol for 

LNL_MG1/MG2, 17-31 kcal/mol and 18-23 

kcal/mol for EPA_MG1/MG2, 20-28 kcal/mol and 

18-21 kcal/mol for DHA_MG1/MG2 (Table 2). 

 

Table 2. Complex energy and interaction energy for ω-3 fatty 

acid monoglyceride / cyclodextrin complexes 

No Code Ecomplex 

(kcal/mol) 

Einteraction 

(kcal/mol) 

1 LNL-MG1_aCD 60.9 16.7 

2 LNL-MG1_bCD 62.8 25.2 

3 LNL-MG1_gCD 68.9 30.6 

4 LNL-MG2_aCD 58.1 20.9 

5 LNL-MG2_bCD 69.8 19.6 

6 LNL-MG2_gCD 76.0 24.9 

7 EPA-MG1_aCD 60.8 17.5 

8 EPA-MG1_bCD 61.4 27.3 

9 EPA-MG1_gCD 69.4 30.8 

10 EPA-MG2_aCD 60.0 18.4 

11 EPA-MG2_bCD 65.5 23.3 

12 EPA-MG2_gCD - - 

13 DHA-MG1_aCD 59.3 19.8 

14 DHA-MG1_bCD 68.5 21.0 

15 DHA-MG1_gCD 72.8 28.2 

16 DHA-MG2_aCD 61.5 18.2 

17 DHA-MG2_bCD 69.3 20.8 

18 DHA-MG2_gCD - - 

 

The most important interaction was observed for the 

case of ω-3 fatty acid diglycerides at 1:2 molecular 

ratio. Thus, the LNL_DG12 / CD interaction had an 

interaction energy of 17-31 kcal/mol for 1:1 

molecular ratio and 47-61 kcal/mol for 1:2 

molecular ratio (Tables 3 and 4). Similar behavior 

was observed for the case of EPA_DG/DHA_DG 

complexes: 26.5-27.7 / 17-25 kcal/mol for EPA_DG 

at 1:1 molecular ratio and 20.6-29.4 / 18.4-24.9 

kcal/mol for DHA_DG at the same ratio; on the 

other hand, the interaction energy for the 

corresponding complexes at 1:2 molecular ratio was 

44.9-49.3 / 44.5-59.5 kcal/mol for EPA_DG 

complexes and 43.8 / 40.8-53.6 kcal/mol for 

DHA_DG complexes (Tables 3 and 4). 

 

Table 3. Complex energy and interaction energy for ω-3 fatty 

acid 1,2- and 1,3-diglyceride / cyclodextrin complexes (1:1 

molecular ratio) 

No Code Ecomplex 

(kcal/mol) 

Einteraction 

(kcal/mol) 

1 LNL-DG12_aCD 61.6 16.6 

2 LNL-DG12_bCD 61.4 27.2 

3 LNL-DG12_gCD 68.7 31.4 

4 LNL-DG13_aCD 64.9 17.3 

5 LNL-DG13_bCD 69.0 23.6 

6 LNL-DG13_gCD 85.6 18.5 

7 EPA-DG12_aCD 57.3 26.5 

8 EPA-DG12_bCD 66.6 27.6 

9 EPA-DG12_gCD 78.0 27.7 

10 EPA-DG13_aCD 66.7 16.6 

11 EPA-DG13_bCD 68.3 25.4 

12 EPA-DG13_gCD - - 

13 DHA-DG12_aCD 62.3 20.6 

14 DHA-DG12_bCD 63.9 29.4 

15 DHA-DG12_gCD 80.1 24.7 

16 DHA-DG13_aCD 64.7 18.4 

17 DHA-DG13_bCD 68.6 24.9 

18 DHA-DG13_gCD - - 

 

Lower guest:host interaction was observed for ω-3 

LNL_TG/CD cases. The interaction energy was 

only 10 kcal/mol for LNL_TG/α-CD at 1:1 

molecular ratio and not significantly higher for 1:3 

molecular ratio (~37 kcal/mol). On the other hand, 

interaction of CDs with EPA_TG and DHA_TG 

was better. The interaction energy for 

EPA_TG/CDs at 1:1 molecular ratio was in the 

range of 26-35 kcal/mol, while for the 

DHA_TG/CDs cases this energy was lower (22-31 

kcal/mol) (Table 5). The interaction energy 

significantly increase at 1:3 molecular ratio, 

especially for EPA_TG/CDs and DHA_TG/CDs 

interactions: 73-93 kcal/mol and 71-81 kcal/mol, 

respectively (Table 6).  
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The difference on interaction energy values for TG 

cases in comparison with the MG and DG cases can 

be explained by the internal van der Waals forces 

and higher steric hindrance for TG/CD interaction 

(Table 6). 

 

Table 4. Complex energy and interaction energy for ω-3 fatty 

acid 1,2- and 1,3-diglyceride / cyclodextrin complexes (1:2 

molecular ratio) 

No Code Ecomplex 

(kcal/mol) 

Einteraction 

(kcal/mol) 

1 LNL-DG12_2aCD 99.0 48.6 

2 LNL-DG12_2bCD 115.4 53.0 

3 LNL-DG12_2gCD 130.2 61.2 

4 LNL-DG13_2aCD 102.7 48.9 

5 LNL-DG13_2bCD 113.5 58.9 

6 LNL-DG13_2gCD 140.8 54.6 

7 EPA-DG12_2aCD 108.3 44.9 

8 EPA-DG12_2bCD 124.7 49.3 

9 EPA-DG12_2gCD - - 

10 EPA-DG13_2aCD 108.2 44.5 

11 EPA-DG13_2bCD 114.0 59.5 

12 EPA-DG13_2gCD - - 

13 DHA-DG12_2aCD 108.5 43.8 

14 DHA-DG12_2bCD - - 

15 DHA-DG12_2gCD - - 

16 DHA-DG13_2aCD 111.7 40.8 

17 DHA-DG13_2bCD 119.7 53.6 

18 DHA-DG13_2gCD - - 

 

Table 5. Complex energy and interaction energy for ω-3 fatty 

acid triglyceride / cyclodextrin complexes (1:1 molecular ratio) 

No Code Ecomplex 

(kcal/mol) 

Einteraction 

(kcal/mol) 

1 LNL-TG_aCD 76.7 10.0 

2 LNL-TG_bCD 72.7 24.4 

3 LNL-TG_gCD 86.8 21.8 

4 EPA-TG_aCD 56.4 35.0 

5 EPA-TG_bCD 76.3 25.5 

6 EPA-TG_gCD 85.0 28.3 

7 DHA-TG_aCD 60.3 22.3 

8 DHA-TG_bCD 66.3 26.7 

9 DHA-TG_gCD 73.7 30.8 

 

Table 6. Complex energy and interaction energy for ω-3 fatty 

acid triglyceride / cyclodextrin complexes (1:3 molecular ratio) 

No Code Ecomplex 

(kcal/mol) 

Einteraction 

(kcal/mol) 

1 LNL-TG_3aCD 118.8 37.3 

2 LNL-TG_3bCD 139.4 37.5 

3 LNL-TG_3gCD 163.3 36.6 

4 EPA-TG_3aCD 157.3 72.9 

5 EPA-TG_3bCD 168.2 93.2 

6 EPA-TG_3gCD - - 

7 DHA-TG_3aCD 150.2 71.2 

8 DHA-TG_3bCD 171.3 81.3 

9 DHA-TG_3gCD - - 

 

Moreover, the guest / host interaction energy for all 

complexes as well as for various subsets of 

supramolecular systems (e.g., α-CD complexes, free 

acids, mono-, di- or triglycerides) was correlated 

with the main structural parameters of the guest 

molecule. Molecular surface and volume, hydration 

energy, the logarithm of the octanol/water partition 

coefficient, logP, refractivity and polarizability 

(Table 7) were the molecular descriptors used for 

quantitative structure-property relationship analysis 

(QSPR). Unfortunately, no statistically significant 

correlations were obtained, suggesting that the 

conformation-related parameters as well as solvent 

influence are more important for guest/host 

interaction in the free ω-3 fatty acid or their mono-, 

di- and triglycerides / α-, β-, and γ-CD 

supramolecular systems. 

 

Table 7. Structural descriptors for free ω-3 fatty acids and their 

mono-, di-, and triglycerides 

No Code Volume 

(Å3) 

Hydration 

energy 

(kcal/mol) 

logP 

1 LNL 310 -5.11 5.62 

2 EPA 333 -5.55 5.9 

3 DHA 362 -6.85 6.43 

4 LNL-MG1 375 -7.11 4.84 

5 LNL-MG2 375 -7.15 4.84 

6 LNL-DG12 667 -5.12 10.76 

7 LNL-DG13 668 -2.71 10.76 

8 LNL-TG 960 -1.01 16.68 

9 EPA-MG1 399 -9.76 5.11 

10 EPA-MG2 399 -5.7 5.11 

11 EPA-DG12 715 -4.43 11.31 

12 EPA-DG13 715 -1.38 11.31 

13 EPA-TG 1031 -2.75 17.5 

14 DHA-MG1 427 -3.37 5.64 

15 DHA-MG2 427 -10.06 5.64 

16 DHA-DG12 773 -5.76 12.37 

17 DHA-DG13 772 -3.52 12.37 

18 DHA-TG 1116 -2.25 19.1 

 

4. Conclusion 

Complexation of ω-3 fatty acids (named α-linolenic 

acid, all-(Z) eicosa-5,8,11,14,17-pentaenoic acid, 

and all-(Z) docosa-4,7,10,13,16,19-hexaenoic acid) 

by natural α-, β- and γ-cyclodextrin was studied by 

theoretical molecular modeling and docking 

experiments. The general conclusion is that the ω-3 

fatty acids and their glycerides well interact with the 

inner cavity of natural cyclodextrins due to their 

geometrical compatibility and hydrophobic/van der 

Waals interactions between the fatty acid moiety 

and the hydrophobic inner cavity of the 
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cyclodextrin. On the other hand, some steric 

hindrance appear due to the spiral-like conformation 

of the polyunsaturated fatty acid moiety, which is 

more rigid than the corresponding saturated fatty 

acid. This behavior appears especially for α-

cyclodextrin supramolecular systems. The 

calculated interaction energy for β- and γ-

cyclodextrin complexes is much higher than for the 

corresponding α-cyclodextrin supramolecular 

system. Finally, ω-3 fatty acid di- and triglyceride / 

cyclodextrin supramolecular systems are more 

efficient for 1:2 and 1:3 molecular ratio, 

respectively. 
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